

Danubius Hotel Gellért

September 4-7, 2018 Danubius Hotel Gellért Budapest, Hungary

Final Programme

Department of Fluid Mechanics / Faculty of Mechanical Engineering Budapest University of Technology and Economics

Welcome to the 17th event of the international conference series on Fluid Flow Technologies!

Conference Venue - Buildings of Interest

Danubius Hotel Gellért Szent Gellért tér 1., Budapest, H-1111

Registration on the 5th of September, the Plenery Session, the oral presentations and the workshops will take place in this building. The venue of the Conference, Danubius Hotel Gellért is located at Szent Gellért tér/square (see the map).

Department of Fluid Mechanics

Bertalan Lajos u. 4-6., H-1111 Budapest "AE" building of BME The Registration and Welcome Reception on the 4th of September will take place in this building. The Department can be reached from Szent Gellért tér/square along Budafoki út/avenue, along the bank of the Danube and through the garden of the University, or from Petőfi híd/bridge along the bank of the Danube (see the map).

The 17th event of the international conference series on Fluid Flow Technologies held in Budapest

CMFF'18 September 4-7, 2018

Danubius Hotel Gellért Budapest, Hungary

Conference Secretariat

Department of Fluid Mechanics / Faculty of Mechanical Engineering Budapest University of Technology and Economics

Bertalan L. u. 4-6., H 1111 Budapest, Hungary Tel: +36 1 463 26 35 cmff@ara.bme.hu www.cmff.hu

Registration and Information Desk

Opening hours: Tuesday 4th of September, 6 pm -8 pm: Located on the ground floor of the Department of Fluid Mechanics, AE building. **Wednesday** 5th of September, 8 am - 6 pm: Located in the Danubius Hotel Gellért. Organizers wearing blue badges are pleased to provide information.

Lunch and coffee breaks

Lunch as well as coffee will be served in the Danubius Hotel Gellért.

Transportation

Danubius Hotel Gellért is easily accessible by public transport (tram, bus, M4). You can find more information about public transport on the internet. www.bkk.hu

Restrictions

Videotaping or audio recording of any session and sale of any publication not authorised by the Conference Secretariat is prohibited.

Social programmes

Welcome Reception (4th of September, 6 pm - 8 pm) offered by the Conference Organisers and hosted by the Department of Fluid Mechanics (AE Building).

Gala Dinner (5th of September, 7:30 pm -10 pm) to be held in the Duna Room of Danubius Hotel Gellért.

Speaker briefing

• Laptops for PowerPoint and pdf presentations, video projectors and pointers are available in each conference room.

• Please contact your session chairperson 10 minutes prior to session opening and provide him/her with your data in a written format, in order to make it possible for him/her to introduce you to the audience:

 \neg name of the presenting author

- ¬ title
- \neg position
- ¬ affiliation
- ¬ year of receipt and subject of scientifc degree (as appropriate)

• Please also contact the session secretary 10 minutes prior to session opening to load your PowerPoint or pdf presentation onto the on-site laptop. You have to deliver your PowerPoint or pdf files on a pen-drive.

• Timing of presentation: You are requested to prepare an oral presentation of duration of 15 minutes. Please respect this time limit strictly, in order to avoid the disturbance of the time schedule. Your presentation will be followed by a 5-minute discussion.

The 4 keynote speeches will be in the topics of:

"Turbomachinery-related aeroacoustic modelling and simulation" by Prof. S. **Moreau**, Sherbrooke (CDN)

"Modeling (understanding and controlling) turbulent flows: the heritage of Leonardo da Vinci in modern computational fluid dynamics"

by Dr. A. **Corsini**, Rome (I)

"State of the art and challenges related to application of CFD in fluids engineering", by Prof. M. **Perić**, Erlangen (D)

"Experimental characterization of sprays: special needs in validating computational models" by. Prof. Y. **Hardalupas**, London (UK)

CMFF'18 Programme of Tuesday Dept. of Fluid Mechanics Budapest University of Technology and Economics

4 September 2018 1111 Budapest, Bertalan Lajos utca 4-6

16:00 - 18:00	Registration and Welcome Reception	
---------------	------------------------------------	--

CMFF'18 Pro	ogramme of	Wednesday	Danubius	Hotel Gellért
			5 S	eptember 2018
	Tea Room	Gobelin Room	Kávé Room	Forrás Room
9:00 - 9:10	-	Welcome Address	-	-
9:10 - 9:55	-	Plenary Session 1 Invited Speaker: Prof. S	- Stéphane Moreau	-
9:55 - 10:25	Break	Break	Break	Break
10:25 - 12:05	WS1	WS2	IF1	ET
12:05 - 13:35	Lunch	Lunch	Lunch	Lunch
13:35 - 14:20	-	Plenary Session 2 Invited Speaker: Prof. A	- Alessandro Corsini	-
14:20 - 14:50	Break	Break	Break	Break
14:50 - 16:50	WS3	WS4	EF1	WS5
	Duna Room			

19:30 - 22:00 Gala Dinner

WS1: Biomedical flows: experiments and simulations I

WS2: On the use of big data technologies in turbomachinery, machine learnt technologies in turbomachinery applications

- WS3: Biomedical flows: experiments and simulations II
- WS4: Aeroacoustics
- WS5: Challenges in unsteady modelling of valves

WS6: Guidelines for environmental flow and dispersion modelling - what do we need?

4

CMFF'18 Programme of Thursday

Danubius Hotel Gellért

6 September 2018

	Tea Room	Gobelin Room	Kávé Room	Forrás Room
9:00 - 9:10	-	Address	-	-
9:10 - 9:55	-	Plenary Session 3 Invited Speaker: Prof.	- Milovan Perić	-
9:55 - 10:25	Break	Break	Break	Break
10:25 - 12:05	WS6	TM1	IF2	BU
12:05 - 13.35	Lunch	Lunch	Lunch	Lunch
13.35 - 14:20	-	Plenary Session 4 Invited Speaker: Prof.	- Yannis Hardalupas	-
14:20 - 14:50	Break	Break	Break	Break
14:50 - 16:50	BIO	TM2	EF2	PL

CMFF'18 Programme of Friday

Danubius Hotel Gellért

7 September 2018

	Tea Room	Gobelin Room	Kávé Room	Forrás Room
9:00 - 11:00	ТМЗ	TM4	EV	MF
11:00 - 11:30	Break	Break	Break	Break
11:30 - 12:50	-	ТМ5	IF3	RF

12:50	-	13:00	-	

Closing Plenary

BIO:	Biomedical Flow	PL:	Particle-Laden Flow
BU:	Bubble Flow and Caviation	RF:	Reactive Flow
EF 1/2:	External Flow	TM1:	Turbine: General Interest
ET:	Energy Transfer	TM2:	Wind Turbines
EV:	Enviromental Flow	TM3:	Pump
IF1/2/3:	Internal Flow	TM4:	Turbomachinery: General Interest
MF:	Multi-Fluid Flow	TM5:	Hydraulic Turbine

Session Identifier	Plenary Session 1	Gobelin Room
Chairperson	Prof. Dominique Thévenin	
	Laboratory of Fluid Dynamics and Technical Flows, Institute of Fluid Dynamics and Thermodynamics, University of Magdeburg "Otto von Guericke", Germany	
Invited Speaker	Prof. Stéphane Moreau Université de Sherbrooke, Sherbrook	(Québec), Canada

#141

Turbomachinery-related aeroacoustic modelling and simulation
 Prof. Stéphane Moreau

Wed. 5. Sept. 9:10 - 9:55

Université de Sherbrooke, Sherbrooke (Québec), Canada

- ABSTRACT

In future Ultra-High By-Pass Ratio turboengines, the turbomachinery noise (fan and turbine stages mainly) is expected to increase significantly. A review of analytical models and numerical meth- ods to yield both tonal and broadband contributions of such noise sources is presented. The former rely on hybrid methods coupling gust response over in- finitely thin flat plates of finite chord length either isolated or in cascade, and acoustic analogies in free- field and in a duct. The latter yields tonal noise with unsteady Reynolds-Averaged Navier-Stokes (u- RANS) simulations, and broadband noise with Large Eddy Simulations (LES). The analytical models are shown to provide good and fast first sound estimates at pre-design stages, and to easily separate the differ- ent noise sources. The u-RANS simulations are now able to give accurate estimates of tonal noise of the most complex asymmetric, heterogeneous fan-OGV configurations. Wall-modeled LES on rescaled stage configurations have now been achieved on all com- ponents: a low-pressure compressor stage, a tran- sonic high-pressure turbine stage and a fan-OGV configuration with good overall sound power level predictions for the latter. In this case, hybrid Lattice- Boltzmann /very large-eddy simulations also appear to be an excellent alternative to yield both contribu- tions accurately at once.

Session Identif	ier WS1- WORKSHOP	Tea Room
Title	Biomedical flows: experiments and simulation	ons I
WS Leader	Dr. Gábor Janiga	
	Dept. Fluid Dynamics and Technical Flows,	
	Forschungscampus STIMULATE, Univ. Magdeburg, Ger	many
Co-organizers	Dr. Philipp Berg	
	Dept. Fluid Dynamics and Technical Flows,	
	Forschungscampus STIMULATE, Univ. Magdeburg, Ger	many
	Prof. Bernard J. Geurts	
	Multiscale Modeling and Simulation, Fac. EEMCS, Univ.	Twente,
	Enschede, The Netherlands,	
	Multiscale Physics of Energy Systems, Fac. Applied Phy	vsics,
	Eindhoven Univ. Technology, Eindhoven, The Netherlar	nds
	Dr. Julia Mikhal	
	BIOS Lab-on-a-Chip Group, Faculty EEMCS, Univ. Twer	nte, Enschede,
	The Netherlands	
	Christoph Roloff	
	Dept. Fluid Dynamics and Technical Flows, Univ. Magdeb	urg, Germany

Wed. 5. Sept. 10:25 - 12:05

10:25 - 10:45

¬ Medical introduction to endovascular treatment of intracranial aneurysms

Jeroen **Boogaarts** Dept. Neurosurgery, Radboud Univ. Medical Center, Nijmegen, Netherlands

10:45 - 11:05

 \neg Haemodynamics, thrombosis and computational flow diverter selection protocols for cerebral aneurysms

Yiannis Ventikos Dept. Mechanical Engineering, University College London, England

#137

11:05 - 11:25

¬ Toward automated analysis of flow in stented aneurysms Julia Mikhal¹, Gabriela Ong², Guido de Jong³, Rene Aquarius³, Joost de Vries³, Jeroen Boogaarts³ and Bernard Geurts^{2,4}

1 BIOS Lab-on-a-Chip Group, Fac. EEMCS, Univ. Twente, Enschede, The Netherlands

2 Multiscale Modeling and Simulation, Fac. EEMCS, Univ. Twente, Enschede, NL

3 Dept. of Neurosurgery, Radboud Univ. Medical Center, Nijmegen, Netherlands

4 Multiscale Physics of Energy Systems, Fac. Applied Physics, Eindhoven Univ. Technology, The Netherlands

#84

11:25 - 11:45

¬ Haemodynamic risk factors of endothelial erosion for patientspecific treatment of coronary heart disease

Michael McElroy¹², Stephen White¹, Thomas Johnson³, Frank Gijsen⁴ and Amir Keshmiri²

1 School of Healthcare Science, Manchester Metropolitan University, U.K.

2 School of Mechanical, Aerospace and Civil Engineering (MACE),

The University of Manchester, U.K

3 Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Bristol, U.K.

4 Dept. of Biomedical Engineering, Erasmus Medical Center, Rotterdam, The Netherlands.

#131

11:45 - 12:05

\neg How to measure blood damage? – Custom-made test benches for cardiovascular implants and devices

Christina Esch, Marc Mueller, Benjamin Krolitzki and Birgit Glasmacher

Institute of Multiphase Processes, Faculty of Mechanical Engineering, Leibniz University of Hannover, Germany

Session Identifier WS2- WORKSHOP Gobelin Room Title On the use of big data technologies in turbomachinery, machine learnt technologies in turbomachinery applications WS Leader Prof. Alessandro Corsini Dept. Mechanical and Aerospace Engineering, Fac. Civil and Industrial Engineering, Sapienza University of Rome, Roma, Italy Co-organizer Dr. Giovanni Delibra Dep. Mechanical and Aerospace Engineering, Fac. Civil and Industrial Engineering, Sapienza University of Rome, Roma, Italy

Wed. 5. Sept. 10:25 - 11:45

\neg On surrogate-based optimization of low-speed axial fan blade profiles

Gino **Angelini**

Department of Mechanical and Aerospace Engineering, Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Italy

10:45 - 11:05 ¬ Adaptive wall function based on deep learning of turbulent flows Lorenzo **Tieghi**

Department of Mechanical and Aerospace Engineering, Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Italy

11:05 - 11:25

Axial fan performance correlations using deep data diving Giovanni Delibra

Department of Mechanical and Aerospace Engineering, Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Italy

11:25 - 11:45

\neg Anomaly detection in turbomachinery with use of phase space portraits

Alessandro Corsini

Department of Mechanical and Aerospace Engineering, Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Italy

IF1 Kávé Room Internal Flow Prof. Valery Goryachev Dep. Mathematics, Tver State Technical University, Russia

Wed. 5. Sept. 10:25 - 12:05

#3 10:25 - 10:45
 ¬ Impacts of pitched tips of kneading element in twin-screw extrusion: tuning flow pattern and mixing performance Yasuya Nakayama², Hiroki Takemitsu², Toshihisa Kajiwara¹,

Koichi Kimura³, Takahide Takeuchi³ and Hideki Tomiyama³

1 Department of Chemical Engineering, Kyushu University, Fukuoka, Japan

2 Department of Chemical Engineering, Kyushu University, Fukuoka, Japan

3 Hiroshima Plant, The Japan Steel Works Ltd., Hiroshima, Japan

#27

10:45 - 11:05

 \neg Couette-Poiseuille flow of a general non-Newtonian liquid in a cylinder annuli

Péter Nagy-György and Csaba Hős

Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Hungary

#91

11:05 - 11:25

¬ A rotary wave in phase condenser mode Herbert Steinrück¹ Anton Maly² and Gregor Glanz¹

1 Department of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, Austria

2 Institute of Energy Systems and Thermodynamics, TU Wien, Vienna, Austria

#110

11:25 - 11:45

 \neg Development of air-cooling concepts for electric motor used in electric aircrafts

Márton **Koren¹**, Zoltán **Petró²**, Viktor **Szente¹**, János **Dorogi²**, Gergely György **Balázs²**

1 Department of Fluid Mechanics, Faculty of Mechanical Engineering,

Budapest University of Technology and Economics, Budapest, Hungary

2 Corporate Technology, Siemens Zrt., Budapest, Hungary

#117

11:45 - 12:05

¬ Cooling jacket development for electric motors used in e-aircrafts Szabolcs Santa¹, Zoltan Petro², Viktor Szente¹, Janos Dorogi², Gergely Gy. Balazs²

 Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
 Corporate Technology, Siemens Zrt., Budapest, Hungary

ET Energy Transfer Prof. Petr Louda

Forrás Room

Inst. Thermomechanics CAS, Prague, Czech Republic Czech Technical Univ. Prague, Dept. Technical Mathematics, Fac. Mechanical Engineering, Czech Republic

Wed. 5. Sept. 10:25 - 12:05

#37 10:25-10:45 \neg Heat transfer across the free surface of a thermocapillary liquid bridge

Francesco Romanò and Hendrik Kuhlmann

Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, Austria

#77

10:45 - 11:05

 \neg Modelling of breathing phenomena within large storage tanks during rapid cooling into metastable two-phase condition

Natalie Schmidt¹, Jens Denecke¹, Juergen Schmidt¹ and Michael Davies²

- 1 CSE Center of Safety Excellence gGmbH, Pfinztal, Germany
- 2 Braunschweiger Flammenfilter GmbH

#82

11:05 - 11:25

¬ Modelling of heat transfer through the external wall barrier Ewa **Szymanek** and Artur **Tyliszczak**

Fac. of Mechanical Engineering and Computer Science, Czestochowa Univ. of Technology, Poland

#104

11:25 - 11:45

¬ Computations of non-isothermal compressible gas flows around moving solid object

Daisuke Toriu and Satoru Ushijima

Academic Center for Computing and Media Studies (ACCMS), Kyoto University, Japan

#68

11:45 - 12:05

¬ Energy cascade in a nonlinear mechanistic model of turbulence Bendegúz Dezső Bak and Tamás Kalmár-Nagy

Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Hungary

Session Identifier	Plenary Session 2	Gobelin Room	
Chairperson	Prof. Dominique Thévenin		
	Laboratory of Fluid Dynamics and T	echnical Flows,	
	Institute of Fluid Dynamics and The	ermodynamics,	
	University of Magdeburg "Otto von Guericke", Germany		
Invited Speaker Prof. Alessandro Corsini			
	Department of Mechanical and Aero	ospace Engineering,	
	Faculty of Civil and Industrial Engineering,		
	Sapienza University of Rome, Roma	i, Italy	

Wed. 5. Sept. 13:35 - 14:20

#140

 Modeling (understanding and controlling) turbulent flows: the heritage of Leonardo da Vinci in modern computational fluid dynamics

Prof. Alessandro Corsini

Department of Mechanical and Aerospace Engineering, Faculty of Civil and Industrial Engineering, Sapienza University of Rome, Roma, Italy

- ABSTRACT

Why it is possible to claim that Leonardo da Vinci has been the "inventor" of the scientific method decades before the Ones (i.e. Galileo Galilei for instance) the History of Science is traditionally giving the fatherhood?

Why Leonardo da Vinci is (somehow) an ante- litteram fluid-dynamic scientist? Why Leonardo's approach can be considered an anticipation of modern applied physics (CFD) and why his newness has not yet fully appreciated? Taking the move from the above three questions, the present work possibly explores the open literature to find proofs of Leonardo's contribution to modern fluid dynamics. The manuscript focuses on three pillar contributions chosen, in the vast repertoire of Leonardo's Notebooks and Artworks, to give a personal perspective on his contribution to the frontiers of the fluid dynamics investigation. Specifically, the manuscript advocates: the link between flow visualization and modern deep learning usage in flow modelling (Section 2), the eco-design perspective implicit in the mimicry of Nature (Section 3), and the intuition of a science of quality and patterns (Section 4)

Session Identif	ier WS3 - WORKSHOP	Tea Room
Title	Biomedical flows: experiments and	simulations II
WS Leader	Dr. Julia Mikhal BIOS Lab-on-a-Chip Group, Fac. EEMCS, Univ The Netherlands	v. of Twente, Enschede,
Co-organizers	Dr. Philipp Berg Dept. Fluid Dynamics and Technical Flows, Ur many, Forschungscampus STIMULATE, Univ. I Prof. Bernard J. Geurts Multiscale Modeling and Simulation, Fac. EEMCS Enschede (NL), Multiscale Physics of Energy Sys Physics, Eindhoven Univ. Technology (NL) Dr. Gábor Janiga Dept. Fluid Dynamics and Technical Flows, Ur many, Forschungscampus STIMULATE, Univ. I Christoph Roloff Otto von Guericke Universität, Magdeburg, Gen	niv. Magdeburg, Ger- Magdeburg, Germany S, Univ. Twente, stems, Fac. Applied niv. Magdeburg, Ger- Magdeburg, Germany many,

	Wed. 5. Sept. 14:50 - 16:30
#139	14:50 - 15:10
 Virtual stenting of intracranial 	aneurysms – explicit versus
implicit approaches	

Philipp Berg and Gábor Janiga

Dept. of Fluid Dynamics and Technical Flows, University of Magdeburg, Germany Forschungscampus STIMULATE, University of Magdeburg, Germany

#133

15:10 - 15:30

\neg Uncertainties in the Hydraulic Resistance measurement of Flow Diverter Stents

Benjamin **Csippa**¹, Csaba **Fülöp**¹, Péter **Haraszti**¹, Gábor **Závodszky**^{1,2}, György **Paál**¹ and István **Szikora**³

1 Dept. of Hydrodynamic Systems, Fac. of Mechanical Engineering,

Budapest University of Technology and Economics, Hungary

- 2 Computational Science Institute, University of Amsterdam, The Netherlands
- **3** Dept. Neurointerventions, National Inst. of Clinical Neurosciences, Budapest, Hungary

#132

15:30 - 15:50

 \neg PIV measurement in an ideal aneurysmal model using a transparent coil model

Makoto **Ohta**^{1,3}, Masanori **Kuze**², Simon **Tupin**¹, Kaihong **Yu**¹, Yasutomo **Shimizu**¹ and Hitomi **Anzai**¹

1 Institute of Fluid Science, Tohoku University, Sendai, Japan

2 Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan

3 ElyT-MAX, Lyon, France

#134 15:50 - 16:10 ¬ CFD validation of intracranial aneurysm flow: impact of light sheet thickness on PIV results

Christoph **Roloff**¹, Philipp **Berg**^{1,2,3}, Frank **Beyrau**⁴ and Dominique **Thévenin**²

1 Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Germany

2 Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Germany

3 Research Campus STIMULATE, Magdeburg, Germany

4 Department of Technical Thermodynamics, University of Magdeburg, Germany

#138

16:10 - 16:30

\neg IB method for stented aneurysms - bounding solutions and resolution requirements

Bernard Geurts^{1,2}, Gabriela Ong¹, Guido de Jong³, Rene Aquarius³,

Joost de Vries³, Jeroen Boogaarts³ and Julia Mikhal⁴

1 Multiscale Modeling and Simulation, Faculty EEMCS, University of Twente, Enschede, The Netherlands

2 Multiscale Physics of Energy Systems, Faculty Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands

3 Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands

4 BIOS Lab-on-a-Chip Group, Faculty EEMCS, University of Twente, Enschede, The Netherlands

Session Identi	fier	WS4 - WORKSHOP	Gobelin Room
Title	Aero	acoustics	
WS Leader	Prof	. Stéphane Moreau	
	Dep.	Mechanical Engineering, Université d	le Sherbrooke, Canada
Co-organizer	Dr. (Csaba Horváth	
	Dept.	Fluid Mechanics, Fac. Mechanical En	igineering, Budapest Uni-
	versit	y of Technology and Economics, Bud	apest, Hungary
		Wed.	5. Sept. 14:50 - 16:50

#95 14:50 - 15:10 ¬ Study on characteristics of aerodynamic sound radiated from longitudinal vortex generated around the leading edge of a delta wing

Shigeru Ogawa, Keita Yano, Hiroki Okada and Kouta Samura

Dept. Mechanical Engineering, National Inst. Technology, Kure Coll., Hiroshima, Japan

#11

15:10 - 15:30

¬ Investigation of the noise sources of a pylon

Kristóf Tokaji, Bence Fenyvesi, Bálint Kocsis and Csaba Horváth

Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Hungary

#32

15:30 - 15:50

¬ Investigation of turbomachinery noise sources using beamforming technology and proper orthogonal decomposition methods

Bence Fenyvesi¹, Eszter Simon¹, Jochen Kriegseis² and Csaba Horváth¹

1 Department of Fluid Mechanics, Faculty of Mechanical Engineering,

Budapest University of Technology and Economics, Budapest, Hungary

2 Institute of Fluid Mechanics, Karlsruhe Institute of Technology, Germany

#12

15:50 - 16:10

Modelling the vortex-jet interaction in self-sustained flow oscillations Péter Tamás Nagy and György Paál

Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary

#15

16:10 - 16:30

$\neg \text{Numerical}$ and experimental research of the flow over cavity taking into account heat transfer effects

Sebastian Rulik, Krzysztof Rusin and Włodzimierz Wróblewski

Institute of Power Engineering and Turbomachinery, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland

#1

16:30 - 16:50

¬ Drone noise reduction via radiation efficiency considerations Csaba Horváth, Bence Fenyvesi, and Bálint Kocsis

Dept. Fluid Mechanics, Fac. Mechanical Engineering, Budapest University of Technology and Economics, Hungary

Kávé Room

Session Identifier Session Main Topic Chairperson

EF1 **External Flow** Prof. Song Fu Dep. Engineering Mechanics, Tsinghua University, Beijing, China

Wed. 5. Sept. 14:50 - 16:50

14:50 - 15:10 #19 - Aerodynamic characteristics of shuttlecock (the effect of flow of the feather shuttlecock and the nylon shuttlecock)

Ryota Katayama and Hiroo Okanaga

Department of Mechanical Engineering, Tokai University, Kanagawa, Japan

#71

15:10 - 15:30

\neg Effects of streamwise and transverse damping on flow around an elastically supported cylinder

Dániel **Dorogi** and László **Baranyi**

Department of Fluid and Heat Engineering, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Miskolc-Egyetemváros, Hungary

#55

15:30 - 15:50

- Aerodynamic characteristics of a reentry capsule at transonic speeds Yuichiro Osawa and Gouii Yamada Mitsuhiro Hase

Department of Mechanical Engineering, Tokai University, Kanagawa, Japan

#89

15:50 - 16:10

 \neg Natural frequency effect on the path of an elastically supported circular cylinder

Dániel Dorogi and László Baranyi

Department of Fluid and Heat Engineering, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Miskolc-Egyetemváros, Hungary

#111

16:10 - 16:30

\neg Prediction of aerodynamic coefficients of road vehicles on bridge deck with and without wind protection by means of CFD

Balazs Pritz, Veronika Krämer, Martin Gabi and Emmerich Tempfli

Institute of Fluid Machinery, Karlsruhe Institute of Technology, Karlsruhe, Germany

#122

16:30-16:50

 \neg The numerical study on the effect of the number of vehicle on fire characteristics in tunnel fire

Younggi Park¹, Junyoung Na¹, Kun Hyuk Sung² and Hong Sun Ryou²

1 Department of Mechanical System Engineering, Chung-Ang University, Seoul, Korea

2 Department of Mechanical Engineering, Chung-Ang University, Seoul, Korea

Session Identifier WS5 - WORKSHOP Forrás Room Title Challenges in unsteady modelling of valves WS Leader Dr. Csaba Hős Dep. Hydrodynamic Systems, Fac. Mechanical Engineering, Budapest University of Technology and Economics, Hungary

Wed. 5. Sept. 14:50 - 16:10

14:50 - 15:10

\neg Stability analysis of spring operated check valves with upstream and downstream pipings

István Tamás Erdődi¹, Csaba Hős¹ and Dávid Felhős²

1 Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary

2 Knorr-Bremse Rail Systems, Budapest, Hungary

#22 15:10 - 15:30 ¬ An impedance-based technique for predicting valve chatter Csaba Hős

Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary

#75

#56

15:30 - 15:50

 \neg Formation and propagation of pressure surges in inlet lines of safety valves and their influence on valve stability

Tobias S. Dannenmaier¹, Jürgen Schmidt¹, Jens Denecke¹,

Oliver Odenwald² and Dariusz Jablonski³

- 1 CSE Center of Safety Excellence GmbH, Pfinztal, Germany
- 2 BASF SE, Ludwigshafen, Germany
- 3 Bayer AG, Leverkusen, Germany

#33

15:50 - 16:10

 \neg Modelling of critical mass flow rates through safety valves in case of non-equilibrium multi-component flashing mixtures

Sara Claramunt, Jürgen Schmidt and Jens Denecke

CSE Center of Safety Excellence GmbH, Pfinztal, Germany

Session Identifier	Plenary Session 3	Gobelin Room		
Chairperson	Prof. Dominique Thévenin			
	Laboratory of Fluid Dynamics and Technical Flows,			
	Institute of Fluid Dynamics and Thermodynamics,			
	University of Magdeburg "Otto von Guericke", Germany			
Invited Speaker	Prof. Milovan Perić			
	Inst. Ship Technology, Ocean Engineering and Transport			
	Systems, Fac. Engineering, Univ. Duisb	ourg-Essen (D)		
	CoMeT Continuum Mechanics Technologies GmbH, Erlangen (D			

Thurs. 6. Sept. 9:10 - 9:55

#135 9:10 - 9:55 ¬ State of the art and challenges related to application of CFD in fluids engineering

Prof. Milovan Perić,

Institute of Ship Technology, Ocean Engineering and Transport Systems, Faculty of Engineering, University of Duisburg-Essen, Duisburg, Germany CoMeT Continuum Mechanics Technologies GmbH, Erlangen, Germany

¬ ABSTRACT

In this paper the state-of-the-art and challenges related to application of Computational Fluid Dynamics (CFD) in fluids engineering are discussed. The major milestones in the development from a pure research discipline to an integral part of the design and optimization process in industry are described. Advantages of CFD over alternatives, especially in the early product design stage but also in product optimization and problem solving, are also addressed. Finally, the trends for future developments in CFD and its application in engineering are outlined. Keywords: CFD, Fluid Dynamics, Fluids Engineering, Industrial Application of CFD

Session Identifier WS6 - WORKSHOP Tea Room Title Guidelines for environmental flow and dispersion modelling - what do we need? WS Leader Prof. Bernd Leitl Environmental Wind Tunnel Lab, Meteorological Institute, Univ. Hamburg, Germany

Thurs. 6. Sept. 10:25 - 12:05

#88

10:25 - 10:45

 \neg Guidelines for environmental flow and dispersion modeling

- what do we need?

Bernd Leitl and Frank Harms

Environmental Wind Tunnel Lab, Meteorological Institute, Univ. Hamburg, Germany

10:45-11:05

 \neg Modeling the urban environment of Budapest with the WRF and WRF-Chem models at the ELTE University

H. Breuer, J. Göndöcs, A. Kovács, Á. Leelőssy, and R. Mészáros

Dept. Meteorology, Fac.Science, Eötvös Lóránd University, Budapest, Hungary

11:05 - 11:25

 \neg NWP models serving dispersion applications at the Hungarian Meteorological Service: turbulence parameterization developments and validation

B. Szintai, A. Csáki, Á. Kovács, D. Lancz, and Á. Tímár

Hungarian Meteorological Service, Budapest, Hungary

11:25-11:45

\neg Applying CHIMERE chemical transport model for the assessment of the air quality of Hungary

E. Homolya and Z. Ferenczi

Hungarian Meteorological Service, Budapest, Hungary

11:45 - 12:05

\neg Wind tunnel and CFD simulation of environmental and urban flows at the Department of Fluid Mechanics

M. Balczó, G. Kristóf, and M. Balogh

Department of Fluid Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Hungary

TM1Gobelin RoomTurbine: General InterestProf. Helmut BenigniInstitute of Hydraulic Fluid Machinery, Graz University of
Technology, Austria

Thurs. 6. Sept. 10:25 - 12:05

 #24 10:25 - 10:45
 ¬ Measurement and CFD prediction of turbine endwall film cooling Pingting Chen, Xueying Li, Jing Ren and Hongde Jiang

Department of Energy and Power Engineering, Tsinghua University, Beijing, PR China

#4

10:45-11:05

¬ Primary and secondary conversion efficiencies of a fixed oscillating water column-type wave energy converter with generator Tengen **Murakami**¹, Yasutaka **Imai**¹, Shuichi **Nagata**¹, Manabu **Takao**²,

Toshiaki Setoguchi¹ and Toshiaki Kanemoto¹

1 Institute of Ocean Energy, Saga University, Saga, Japan

2 Department of Mechanical Engineering, National Institute of Technology, Matsue College, Matsue, Japan

#2 Investigations of an enclosed annular rotor stator system Zhe **Jiao** and Song **Fu**

School of Aerospace Engineering, Tsinghua University, Beijing, China

#64

11:25 - 11:45

¬ Mathematical modelling of flow in the first stage of highpressure turbine with multiple steam nozzle control

Arkady **Zaryankin**¹, Andrey **Rogalev**², Alexander **Akatov**¹, Takhid **Padash**¹ and Vladislav **Krutitskii**¹

1 Department of Steam and Gas Turbines, National Research University "Moscow Power Engineering Institute", Moscow, Russia

2 Department of Innovative Technologies of High-Tech Industries, National Research University "Moscow Power Engineering Institute", Moscow, Russia

#96

11:45 - 12:05

 \neg A new horizontal wind turbine with a circular cylinder driven by longitudinal vortex system

Shigeru Ogawa, Takahiro Nomura, Naoki Hata, Yusuke Kimura

and Yoshihiko Sorokin

Department of Mechanical Engineering, National Institute of Technology, Kure College, Hiroshima, Japan

IF 2 Kávé Room Internal Flow Prof. Kawaguchi Yasuo Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan

Thurs. 6. Sept. 10:25 - 12:05

10:25 - 10:45

\neg Planar elongation flow analysis of non-Newtonian fluids using a disk-shaped bob

Shunsaku Ito¹, Yukinobu Sugihara¹, Shuichi Iwata², Tsutomu Takahashi³

1 Department of Life-Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Aichi, Japan

2 Department of Electronic Control Engineering, National Institute of Technology, Nagaoka College

3 Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan

#102

#78

10:45 - 11:05

¬ Rheo-optic properties of chromonic liquid crystal dye in transient shear Shiro **Wakaki**, Yoshiki **Yamada** and Tsutomu **Takahashi**

Dept. Mechanical Engineering, Nagaoka University of Technology, Niigata, Japan

#105

11:05 - 11:25

¬ Shear layer generation in yield behavior of gels Yasunori Sato, Ippei Homma and Tsutomu Takahashi

Dept. Mechanical Engineering, Nagaoka University of Technology, Niigata, Japan

#114

11:25 - 11:45

\neg Influence of magnetic field on a shear driven motion of a viscous non-conducting ferrofluid

Gabriella Bognar

Institute of Machine and Product Design, Faculty of Mechanical Engineering and Informatics, University of Miskolc, Hungary

BU Forrás Room Bubble Flow and Cavitation Prof. Tsutomu Takahashi Dept. Mechanical Engineering, Nagaoka University of Technology, Niigata, Japan

Thurs. 6. Sept. 10:25 - 12:05

10:25 - 10:45

\neg Cavitation in a high specific speed Kaplan pit-type turbine – two-phase CFD-simulations and experimental verification

Juergen Schiffer, Helmut Benigni and Helmut Jaberg

Institute of Hydraulic Fluidmachinery, Graz University of Technology, Graz, Austria

#93

#25

10:45 - 11:05

 \neg CFD simulation of the nonlinear dynamics of laser generated cavitation bubbles

Max Koch¹, Christiane Lechner^{1,2}, Robert Mettin¹ and Werner Lauterborn¹

1 Third Physical Institute, Georg-August Universität Göttingen, Göttingen, Germany

2 Institute of Fluid Mechanics and Heat Transfer, TU Wien, Vienna, Austria

#99

11:05 - 11:25

\neg Investigation of single bubble dynamics and strength of collapse in dual-frequency driven acoustic field

Roxána Varga¹, Robert Mettin² and Ferenc Hegedűs¹

1 Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary

2 Third Institute of Physics, Georg-August-University, Göttingen, Germany

#45

11:25 - 11:45

\neg Effect of pressure-oscillation on bubble-liquid phase mass transfer

Keita Yamamoto¹, Shuichi Iwata¹, Ryo Nagumo¹, Hideki Mori¹

and Tsutomu Takahashi²

1 Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Aichi, Japan

2 Department of Mechanical Engineering, Nagaoka University of Technology, Niigata, Japan

Session Identifier	Plenary Session 4	Gobelin Room		
Chairperson	Prof. Dominique Thévenin			
	Laboratory of Fluid Dynamics and Technical Flows, Institute of Fluid Dynamics and Thermodynamics, University of Magdeburg "Otto von Guericke", Germany			
Invited Speaker	Prof. Yannis Hardalupas			
	Department of Mechanical Engineering,			
	Imperial College London, United Kingd	om		

Thurs. 6. Sept. 13:35 - 14:20

#142

13:35 - 14:20

 \neg Experimental characterization of sprays: special needs in validating computational models

Prof. Yannis Hardalupas,

Department of Mechanical Engineering, Imperial College London, United Kingdom

¬ ABSTRACT

The formation and droplet dispersion of sprays is important for many industrial applications. The formation of sprays occurs through two stages of the liquid breakup process. The primary breakup, during which the continuous liquid, supplied to an atomiser, breaks up into liquid fragments, and the secondary breakup, during which the liquid fragments breakup again to form the final stable droplets that exist in sprays downstream from the nozzle. The stable droplets then, for example, disperse through interaction with the surrounding gas flow turbulence, collide or evaporate, and these processes modify the characteristics of sprays. The current paper summarises recent experimental approaches that allow the study of primary and secondary breakup close to the atomiser exit, where optical access is limited, and the downstream stable droplet behaviour in sprays. Examples of the physical understanding gained from these experimental studies are presented. The consequences of these findings on the development and evaluation of improved computational models for liquid atomisation and droplet dispersion is discussed.

BIO Tea Room Biomedical Flow Dr. Philipp Berg Department of Fluid Dynamics and Technical Flows, University of Magdeburg, Germany Forschungscampus STIMULATE, University of Magdeburg, Magdeburg, Germany

Thurs. 6. Sept. 14:50 - 16:10

14:50 - 15:10

\neg Flow diversion capability of intracranial FD stents by means of hydrodynamic resistance measurements

Benjamin Csippa¹, Gábor Závodszky^{1,2}, György Paál¹ and István Szikora³

1 Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary

2 Computational Science Institute, University of Amsterdam, The Netherlands

3 Department of Neurointerventions, National Institute of Clinical Neurosciences, Budapest, Hungary

#58 15:10-15:30 ¬ Computational modelling of Newtonian fluids flow in a bypass tube

Radka Keslerova¹, Hynek Reznicek¹ and Tomas Padelek²

1 Department of Technical Mathematics, Faculty of Mechanical Engineering, Czech Technical University in Prague, Czech Republic

2 Department of Transport Systems, Faculty of Transportation Sciences, Czech Technical University in Prague, Czech Republic

#72

#73

15:30 - 15:50

Hydrodynamic resistance of stenosed coronary arteries Benjamin Csippa¹, Dániel Gyürki¹, György Paál¹ and Zsolt Kőszegi²

1 Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary

2 Institute of Cardiology, University of Debrecen, Debrecen, Hungary

#9

15:50 - 16:10

 \neg Modeling of dry powder transport and deposition in the respiratory tract

Vasilis Bontozoglou¹ and Konstantinos Gourgoulianis²

1 Department of Mechanical Engineering, School of Engineering, University of Thessaly, Volos, Greece

2 Pulmonology Clinic, School of Medicine, University of Thessaly, Volos, Greece

TM2 Wind Turbines Dr. Viktor Szente

Gobelin Room

Dept. Fluid Mechanics, Fac. Mech. Eng., Budapest University of Technology and Economics, Hungary

Thurs. 6. Sept. 14:50 - 16:30

#103 14:50 - 15:10 ¬ Introduction of a new wind turbine system driven by longitudinal vortex

Tsutomu ${\bf Takahashi^1},$ Kasumi ${\bf Sakamoto^2}$ and Withun ${\bf Hemsuwan^3}$

1 Dept. Mechanical Engineering, Nagaoka University of Technology, Niigata, Japan

2 Dept. Science of Technology Innovation, Nagaoka Univ. of Technology, Niigata, Japan

3 Graduate School of Engineering, Nagaoka University of Technology, Niigata, Japan

#43

15:10 - 15:30

¬ Influence of pitch of blades on efficiency characteristic of wind turbine driven by longitudinal vortex

Kasumi Sakamoto¹, Shota Nakada¹, Withun Hemsuwan²

and Tsutomu Takahashi³

1 Dept. Science of Technology Innovation, Nagaoka Univ. of Technology, Niigata, Japan

2 Graduate School of Engineering, Nagaoka University of Technology, Niigata, Japan

3 Dept. Mechanical Engineering, Nagaoka University of Technology, Niigata, Japan

#49

15:30 - 15:50

 \neg Effect of the blade tip on power characteristics of horizontal axis circular cylinder blades wind turbine driven by longitudinal vortex

Shota Nakada¹, Kasumi Sakamoto¹, Withun Hemsuwan²

and Tsutomu **Takahashi**³

1 Dept. Science of Technology Innovation, Nagaoka Univ. Technology, Niigata, Japan

2 Graduate School of Engineering, Nagaoka University of Technology, Niigata, Japan

3 Dept. Mechanical Engineering, Nagaoka University of Technology, Niigata, Japan

#51

15:50 - 16:10

¬ Numerical modelling of the ice throw from wind turbines Robert Szasz¹, Alexandre Leroyer² and Johan Revstedt¹

- 1 Department of Energy Sciences, Lund University, Sweden
- 2 ISAE-ENSMA, Chasseneuil-du-Poitou, France

#70

16:10 - 16:30

¬ The aerodynamic performance of a novel wind turbine blade design Ali Al **Sam¹**, Johan **Revstedt²** and Rikard **Berthilsson¹**

1 Energy Sciences Department, Lund University, Lund, Sweden

2 Winfoor AB, Lund, Sweden

EF2 External Flow Prof. László Baranyi,

Dept. Fluid and Heat Engineering, Fac. Mechanical Engineering and Informatics, University of Miskolc, Hungary

Thurs. 6. Sept. 14:50 - 16:50

Kávé Room

#13 14:50-15:10 ¬ The effect of spanwise and streamwise flexible coating on the boundary layer transition

Péter Tamás Nagy and György Paál

Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Hungary

#16

15:10 - 15:30

→ The influence of disc roughness on Tesla turbine performance prediction Krzysztof **Rusin** and Włodzimierz **Wróblewski**

Institute of Power Engineering and Turbomachinery, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Gliwice, Poland

#29

15:30 - 15:50

\neg A stochastic approach to investigate the incompressible temporally developing turbulent boundary layer

Rakhi and Heiko **Schmidt** Department of Mechanical Engineering, Electrical and Energy Systems, BTU Cottbus-Senftenberg, Germany

#42

15:50 - 16:10

¬ Effects of horizontal grooves and concave portion to aerodynamic characteristics of square cylinder

Tatsuya Takaya Department of Fluid Mechanics,

Faculty of Mechanical Engineering, Tokai University, Kanagawa, Japan

#66

16:10 - 16:30

\neg Investigation of the influence of dimples on the resistance of overflowed plates

Julian Praß¹, Hagen Wannemacher¹, Jörg Franke² and Stefan Becker¹

 Institute of Process Machinery and Systems Engineering, Faculty of Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
 Institute for Factory Automation and Production Systems, Faculty of Engineering, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany

#6

16:30 - 16:50

\neg Boundary layer flow approximation for asymmetric oscillatory sheet flow transport

Xin Chen and Fujun Wang

Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University , Beijing, China

PL Particle-Laden Flow Dr. Daisuke Toriu

Academic Center for Computing and Media Studies (AC-CMS), Kyoto University, Japan

Thurs. 6. Sept. 14:50 - 16:30

#38 14:50 - 15:10 \neg Researches on the simulation of the hydrodynamic erosion phenomenon in the riverbed

Mihail Luca¹, Alexandru-Lucian Luca², Stefania Chirica³,

Fabian Tamasanu² and Anca Balan³

1 Dept. Hydrotechnic and Environment Engineering, Technical Univ. "Gh. Asachi", Jassy, Romania

2 Polias-Instal Company, Iași, Romania

3 Doctoral School of the Faculty of Hydrotechnics, Geodesy and Environmental Engineering, Technical University "Gh. Asachi" Jassy, Romania

#41

¬ Study on capillary rise of suspension

Yukinobu Sugihara, Yuto Nishikawa and Tsutomu Takahashi

Dept. Mechanical Engineering, Nagaoka University of Technology, Niigata, Japan

#52

15:30 - 15:50

15:10 - 15:30

¬ Sedimentation of cubical particles in a power-law fluid Naser **Hamedi** and Johan **Revstedt**

Department of Energy Sciences, Fluid Mechanics, Lund University, Lund, Sweden

#108

15:50 - 16:10

 \neg Experimental and numerical study on the inertial focusing of spherical particles suspended in square channel flows

Masako Sugihara-Seki^{1,2} and Hiroshi Yamashita³

1 Dept. Pure and Applied Physics, Fac. Engineering Science, Kansai University, Osaka, Japan

- 2 Graduate School of Engineering Science, Osaka University, Osaka, Japan
- 3 Graduate School of Science and Engineering, Kansai University, Osaka, Japan

#130

16:10 - 16:30

\neg Multiphase model to predict many gravel particles transported by free-surface flows

Satoru ${\bf Ushijima^1}$ and Daisuke ${\bf Toriu^1},$ Hirofumi ${\bf Yanagi^2}$

1 Academic Center for Computing and Media Studies (ACCMS), Kyoto Univ. Kyoto-shi, Japan

2 CERE, Graduate School of Engineering, Kyoto University, Kyoto-shi, Japan

Forrás Room

Session Identifier	ТМЗ	Tea Room
Session Main Topic	Pump	
Chairperson	Prof Young-Seok Choi	
	Advanced Energy & Technology, University	/ of Science &
	Technology, Daejeon, Korea	
	Thermal & Fluid System R&D Group, Korea	a
	Institute of Industrial Technology, Cheona	n, Korea
	Fri. 7. Sept	. 9:00 - 10:40

#129 9:00 - 9:20 ¬ Guide vane foils change the positive slope on pump performance curves of pump-turbines

Guocheng Lu, Zhigang Zuo and Shuhong Liu

Department of Energy and Power Engineering, Tsinghua University, Beijing, P.R. China

#98

9:20 - 9:40

\neg Analysis of four-quadrant performance curves for calculation of hydraulic machinery transient regimes

Zdravko Giljen¹ and Milos Nedeljkovic², Yongguang Cheng³

1 Business and Technical Development Directorate, Sector for new projects, Montenegro Electric Company, Nikšić, Montenegro

2 University of Belgrade, Faculty of Mechanical Engineering,

Department for Hydraulic Machinery and Energy Systems, Belgrade, Serbia

3 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan, China

#31

9:40 - 10:00

\neg Maximum efficiency despite lowest specific speed – optimisation of a side channel pump by means of CFD

Markus Mosshammer^{1,} Helmut Benigni¹, Helmut Jaberg¹ and Juergen Konrad²

1 Institute of Hydraulic Fluidmachinery, Faculty of Mechanical Engineering, Graz University of Technology, Austria

2 Dickow Pumpen GmbH & Co. KG, Waldkraiburg, Germany

#34

10:00 - 10:20

 \neg Numerical and experimental investigation of a vortical flow-inducing jet pump

Andrew **Morrall**, M. Sergio **Campobasso** and Stephen **Quayle** Department of Engineering, Faculty of Science and Technology, Lancaster University, United Kingdom

#59

10:20 - 10:40

\neg Numerical investigation of the 4-quadrant behaviour of different mixed flow diffuser pumps with experimental verification

Stefan Holler, Helmut Benigni and Helmut Jaberg

Institute of Hydraulic Fluidmachinery, Graz University of Technology, Graz, Austria

TM4 Gobelin Room Turbomachinery: General Interest Dr. Csaba Horváth Dept, Fluid Mechanics, Fac, Mech Eng., Budapest Univer-

Dept. Fluid Mechanics, Fac. Mech Eng., Budapest University of Technology and Economics, Hungary

Fri. 7. Sept. 9:00 - 11:00

#20 9:00 - 9:20 ¬ Numerical modelling of transonic flows in wind tunnel test section Petr Louda¹ and Jaromir Prihoda²

1 Institute of Thermomechanics CAS, Prague, Czech Republic

2 Czech Technical University in Prague, Dept. of Technical Mathematics, Fac. of Mechanical Engineering, Institute of Thermomechanics CAS, Prague, Czech Republic

#48

9:20 - 9:40

\neg Low-speed aerodynamic characteristics of double-delta wings with canards

Saya Mochizuki and Gouji Yamada

Department of Mechanical Engineering, Tokai University, Kanagawa, Japan

#50

9:40 - 10:00

\neg Application of aerodynamic design limits for radial flow fans to the Cordier-diagram

Martin Kalva and Reinhard Willinger

Institute for Energy Systems and Thermodynamics, Technische Universität Wien, Austria

#92

10:00 - 10:20

\neg Fluid-structure interaction in the first stage of an axial compressor

Johan Revstedt, Weiwei Li and Magnus Genrup

Department of Energy Sciences, Lund University, Lund, Sweden

#101

10:20 - 10:40

 \neg Three-components LDA investigation of the turbulent swirl jet behind the axial fan

Novica Jankovic, Djordje Cantrak and Milos Nedeljkovic

Hydraulic Machinery and Energy Systems Department, Faculty of Mechanical Engineering, University of Belgrade, Serbia

#128

10:40 - 11:00

\neg Flow mechanism of the aperiodic flow patterns around an airfoil with leading-edge protuberances

Chang Cai, Zhigang Zuo and Shuhong Liu

Department of Energy and Power Engineering, Tsinghua University, Beijing, China

EV Kávé Room **Environmental Flow** Dr. Gergely Kristóf Dep. Fluid Mechanics, Fac. Mech Eng., Budapest University of Technology and Economics, Hungary

Fri. 7. Sept. 9:00 - 10:40

9:00 - 9:20 - Wind tunnel measurement of the dispersion for two side by side plumes over a thin fence

Bao-Shi Shiau^{1,2} and Sine-Jie Wang²

1 Institute of Physics, Academia Sinica, Taipei, Taiwan

2 Dept. of Harbor and River Engineering, National Taiwan Ocean Univ., Keelung, Taiwan

#39

9:20 - 9:40

- Map-based modelling of high-Rayleigh-number turbulent convection in planar and spherical confinements

Marten Klein¹, Heiko Schmidt¹ and David O. Lignell²

1 Dept. of Numerical Fluid and Gas Dynamics, Fac. of Mech. Engineering, Electrical and Energy Systems, Brandenburg Univ. of Technology (BTU) Cottbus-Senftenberg, Germany 2 Department of Chemical Engineering, Brigham Young University, Provo, UT, U.S.A.

#40

9:40 - 10:00

 \neg Modeling of the diffusion characteristics of the unsteady plume in guasi-homogeneous turbulence for the estimation of the diffusion source

Toma Shimohigashi, Takahiro Tsukahara and Yasuo Kawaguchi

Department of Mechanical Engineering, Tokyo University of Science, Tokyo, Japan

#86

10:00 - 10:20

- Modeling dense gas dispersion processes in a boundary layer wind tunnel

Frank Harms and Bernd Leitl

Meteorological Institute, University of Hamburg, EWTL, Hamburg, Germany

#113

10:20 - 10:40

– Modeling and computation of air flow in solar chimney power plant Aleksandar Ćoćić¹ and Vladan Djordjević²

1 Department of Fluid Mechanics, Faculty of Mechanical Engineering, University of Belgrade, Serbia

2 Serbian Academy of Sciences and Arts, Belgrade, Serbia

MF Multi-Fluid Flow Dr. Artur Tyliszczak Inst. Thermal Machinery, Fa

Inst. Thermal Machinery, Fac. Mechanical Engineering and Computer Science, Czestochowa University of Technology, Częstochowa, Poland

Fri. 7. Sept. 9:00 - 10:20

#63

9:00 - 9:20

Forrás Room

\neg CFD modelling and experimental investigation of flow behavior in sewer pipes

Maryam Alihosseini, Raja Abou Ackl and Paul Uwe Thamsen

Department of Fluid Mechanics, Faculty of Mechanical Engineering, Berlin University of Technology, Berlin, Germany

#85

9:20 - 9:40

\neg Smoothed particle hydrodynamics for Navier-Stokes fluid flow applications

Pierre **Sabrowski**¹, Sabine **Przybilla**², Felix **Pause**³, Lennart **Beck**², Joachim **Villwock**² and Paul Uwe **Thamsen**¹

1 Institute of Fluid Mechanics and Acoustic,

Technical University Berlin, EFRE research project OPuS, Berlin, Germany

- 2 Beuth University of Applied Sciences Berlin, EFRE research project OPuS, Germany
- 3 dive.sph, Berlin, Germany

#118

9:40 - 10:00

\neg Numerical study of a flat surface wettability for varying initial conditions

Dariusz Asendrych

Institute of Thermal Machinery, Częstochowa University of Technology, Poland

#126

10:00 - 10:20

\neg A novel numerical scheme for N-fluid flow with full thermodynamic consistency on arbitrary moving grids

Thibaud $\ensuremath{\text{Vazquez-Gonzalez}}^1$, Antoine $\ensuremath{\text{Llor}}^1$ and Christophe $\ensuremath{\text{Fochesato}}^2$

- 1 CEA, DAM, DIF, Arpajon, France
- 2 CEA, DEN, CAD, Saint-Paul-lez-Durance, France

TM5 **Gobelin Room Hydraulic Turbine Prof. Milos Nedeljkovic** Dep. Hydraulic Machinery and Energy Systemxs, Fac. Mech. Eng., University of Belgrade, Belgrade, Serbia

Fri. 7. Sept. 11:30 - 12:50

11:30 - 11:50 \neg Experimental evaluation of the behavior of flexible structures for vertical axis water turbines

Stefan Hoerner¹, Shokoofeh Abbaszadeh², Thierry Maître³,

Laure Vignal³, Christian-Toralf Weber⁴, Roberto Leidhold² and Dominique Thévenin¹

1 Institute of Fluid Dynamics and Thermodynamics, Faculty of Process and Systems Engineering, Otto-von-Guericke-University Magdeburg, Germany

2 Institute of Electric Power Systems, Faculty of Electrical Engineering and Information Technology, Otto-von-Guericke-University Magdeburg, Germany

3 Laboratory of Geophysical and Industrial Flows, Grenoble Institute of Technology, University Grenoble-Alpes, Grenoble, France

4 Department of Engineering and Industrial Design, University of Applied Sciences Magdeburg, Germany

#106

11:50 - 12:10

\neg Blockage effect of a runner blade on the hydraulic performance and internal flow characteristics of a Francis hydro turbine Seung-Jun Kim¹, Young-Seok Choi¹, Yong Cho², Jong-Woong Choi² and Jin-Hyuk Kim¹

1 Advanced Energy & Technology, University of Science & Technology, Daejeon, Korea; Thermal & Fluid System R&D Group, Korea Institute of Industrial Technology, Cheonan, Korea 2 K-water Institute, Korea Water Resources Corporation, Daejeon, Korea

#74

12:10 - 12:30

 \neg Pressure pulsation in the stationary and rotating system of a high specific speed Kaplan pit-type turbine – CFD-simulations and experimental verification

Helmut Benigni, Juergen Schiffer, Christian Bodner and Helmut Jaberg Institute of Hydraulic Fluid Machinery, Faculty of Mechanical Engineering, Graz University of Technology, Austria

#83

12:30 - 12:50

- Development of a cross-flow-turbine by using 3D-CFD-calculations Christian Bodner, Helmut Benigni and Helmut Jaberg

Institute for Hydraulic Fluid Machinery, Graz University of Technology, Austria

#76

Kávé Room

Session Identifier Session Main Topic Chairperson

IF3 **Internal Flow** Prof. Jing Ren

Dep. Thermal Engineering, Institute of Gas Turbine, Tsinghua University, Beijing, China

Fri. 7. Sept. 11:30 - 12:50

#5

11:30 - 11:50

¬ CFD-based optimization of sharp square-sectioned U-bends with/without system rotation: RANS vs. IDDES

Evgueni Smirnov¹, Dmitry Panov², Vladimir Ris² and Valery Goryachev³

1 Department of Fluid Dynamics, Combustion and Heat Transfer,

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

2 Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia

3 Tver State Technical University, Tver, Russia

11:50 - 12:10

#26 - Predicting the flow field in a U-bend with deep neural networks Gergely Hajgató¹, Bálint Gyires-Tóth² and György Paál¹

1 Department of Hydrodynamic Systems, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary

2 Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics, Budapest University of Technology and Economics

#36

12:10 - 12:30

¬ Comparison of LES and RANS evaluations with experimental tests on u-bend duct geometry

Giacomo Alessi^{1,2}, Tom Verstraete¹, Lilla Koloszar¹ and Jeroen van Beeck¹

- **1** von Karman Institute for Fluid Dynamics, Sint-Genesius-Rode, Belgium
- 2 Catholic University of Leuven, Civil Engineering Department, Leuven, Belgium

#54

12:30 - 12:50

 \neg Tomographic PIV measurements in a helically coiled reactor Péter Kováts, Katharina Zähringer,

Dominique Thévenin and Fabio J. W. A. Martins

Laboratory of Fluid Dynamics and Technical Flows, Otto-von-Guericke-Universität Magdeburg, Magdeburg, Germany

RF **Reactive Flow** Dr. Balázs Pritz

Forrás Room

Institute of Fluid Machinery, Karlsruhe Institute of Technology, Karlsruhe, Germany

Fri. 7. Sept. 11:30 - 12:30

#30 11:30 - 11:50 \neg One-dimensional turbulence simulations for reactive flows in open and closed systems

Tommy Starick, Juan A. Medina M. and Heiko Schmidt

Faculty of Mechanical Engineering, Brandenburg University of Technology Cottbus-Senftenberg, Germany

#97

11:50 - 12:10

¬ Flamelet progress variable modelling of pulverised coal devolatilisation and burning in opposed jets

Yiran Chen^{1,2}, Oliver Stein², Andreas Kronenburg²,

Michele Vascellari³, Christian Hasse⁴ and Kaihong Luo^{1,5}

1 Center for Combustion Energy, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Tsinghua University, Beijing, PR China

- **2** Institut für Technische Verbrennung, Universität Stuttgart, Stuttgart, Germany
- **3** Numerical Thermo-Fluid Dynamics, TU Bergakademie Freiberg, Freiberg, Germany
- 4 Simulation of Reactive Thermo-Fluid Systems, TU Darmstadt, Darmstadt, Germany
- 5 Department of Mechanical Engineering, University College London, London, UK

#79

12:10 - 12:30 - Modelling of the spark ignition in turbulent reacting dropletladen jet using LES

Jakub Stempka, Lukasz Kuban and Artur Tyliszczak

Institute of Thermal Machinery, Czestochowa University of Technology, Faculty of Mechanical Engineering and Computer Science, Czestochowa, Poland The Organizing Committee of CMFF'18 would like to thank the contribution of the Review Organizers:

Dr. S. Campobasso Dr. A. Ćoćić Dr. G. Delibra Prof. S. Drobniak Dr. Á. Fáy Prof. V. Goryachev Dr. F. Hegedűs Dr. Cs. Horváth Dr. Cs. Hős Prof. H. Jaberg Dr. G. Janiga Dr. A. Keshmiri Prof. P. Louda Prof. S. Liu Prof. M. Luca Prof. Kai Luo

Prof. N.C. Markatos Prof. M. Nedeljkovic Dr. B. Pritz Prof. J. Revstedt Dr. F. Romanò Dr. A. Samad Prof. S. Sasic Prof. H. Schmidt Prof. B. Shiau Prof. H. Steinrück Prof. T. Takahashi Prof. P.-U. Thamsen Dr. A. Tyliszczak Dr. B.P.M. van Esch Dr. T. Weidinger Prof. R. Willinger

Author Index

#	name	<pre>page# (SessionID)</pre>	#	name	page (SessionID)
	Α			С	
76	Abbaszadeh, S.	32 (TM5)	128	Cai, C.	29 (TM4)
63	Abou Ackl, R.	31 (MF)	34	Campobasso, M.S.	28 (TM3)
64	Akatov, A.	20 (TM1)	101	Cantrak, D.	29 (TM4)
70	Al Sam, A.	25 (TM2)	24	Chen, P.	20 (TM1)
36	Alessi, G.	33 (IF3)	6	Chen, X.	26 (EF2)
38	Alexandru-Lucian, L.	27 (PL)	97	Chen, Y.	34 (RF)
63	Alihosseini, M.	31 (MF)	98	Cheng Y.	28 (TM3)
-	Angelini, G.	9 (WS2)	106	Cho, Y.	32 (TM5)
132	Anzai, H.	13 (WS3)	106	Choi, JW.	32 (TM5)
137	Aquarius, R.	7 (WS1)	106	Choi, YS.	32 (TM5)
138	Aquarius, R.	14 (WS3)	33	Claramunt, S.	17 (WS5)
118	Asendrych, D.	31 (MF)	113	Ćoćić, A.	30 (EV)
			-	Corsini, A.	9 (WS2)
	В		140	Corsini, A.	12 (PLE-S2)
68	Bak, B.D.	11 (ET)	-	Csáki, A.	19 (WS6)
38	Balan, A.	27 (PL)	133	Csippa, B.	13 (WS3)
110	Balázs, G.G.	10 (IF1)	72	Csippa, B.	24 (BIO)
117	Balázs, G.G.	10 (IF1)	73	Csippa, B.	24 (BIO)
-	Balczó, M.	19 (WS6)			
-	Balogh, M.	19 (WS6)			
21	Baranyi, L.	16 (EF1)		D	
89	Baranyi, L.	16 (EF1)	75	Dannenmaier, T. S.	17 (WS5)
85	Beck, L.	31 (MF)	77	Davies, M.	11 (ET)
66	Becker, S.	26 (EF2)	137	de Jong, G.	7 (WS1)
25	Benigni, H.	22 (BU)	138	de Jong, G.	14 (WS3)
31	Benigni, H.	28 (TM3)	137	de Vries, J.	7 (WS1)
59	Benigni, H.	28 (TM3)	138	de Vries, J.	14 (WS3)
74	Benigni, H.	32 (TM5)	-	Delibra, G.	9 (WS2)
83	Benigni, H.	32 (TM5)	33	Denecke, J.	17 (WS5)
134	Berg, P.	14 (WS3)	75	Denecke, J.	17 (WS5)
139	Berg, P.	13 (WS3)	77	Denecke, J.	11 (ET)
70	Berthilsson, R.	25 (TM2)	113	Djordjević, V.	30 (EV)
134	Beyrau, F.	14 (WS3)	21	Dorogi, D.	16 (EF1)
74	Bodner, C.	32 (TM5)	89	Dorogi, D.	16 (EF1)
83	Bodner, C.	32 (TM5)	110	Dorogi, J.	10 (IF1)
114	Bognar, G.	21 (IF2)	117	Dorogi, J.	10 (IF1)
9	Bontozoglou, V.	24 (BIO)		-	
-	Boogaarts, J.	/ (WS1)	-		
13/	вооgaarts, J.	/ (WS1)	56	Erdödi, I.T.	17 (WS5)
138	Boogaarts, J.	14 (WS3)	131	Esch, C.	7 (WS1)
-	Breuer, H.	19 (W26)			

#	name	page (SessionID)	#	name	page (SessionID)
	F				
56	Felhős, D.	17 (WS5)	105	Homma, I.	21 (IF2)
1	Fenyvesi, B.	15 (WS4)	-	Homolya, E.	19 (WS6)
11	Fenyvesi, B.	15 (WS4)	1	Horváth, Cs.	15 (WS4)
32	Fenyvesi, B.	15 (WS4)	11	Horváth, Cs.	15 (WS4)
-	Ferenczi, Z.	19 (WS6)	32	Horváth, Cs.	15 (WS4)
126	Fochesato, C.	31 (MF)	22	Hős, Cs.	17 (WS5)
66	Franke, J.	26 (EF2)	27	Hős, Cs.	10 (IF1)
2	Fu, S.	20 (TM1)	56	Hős, Cs.	17 (WS5)
133	Fülöp, C.	13 (WS3)			
				I	
	G		4	Imai, Y.	20 (TM1)
111	Gabi, M.	16 (EF1)	78	Ito, S.	21 (IF2)
92	Genrup, M.	29 (TM4)	45	Iwata, S.	22 (BU)
137	Geurts, B.	7 (WS1)	78	Iwata, S.	21 (IF2)
138	Geurts, B.	14 (WS3)			
84	Gijsen, F.	7 (WS1)		J	
98	Giljen, Z.	28 (TM3)	25	Jaberg, H.	22 (BU)
91	Glanz G.	10 (IF1)	31	Jaberg, H.	28 (TM3)
131	Glasmacher, B.	7 (WS1)	59	Jaberg, H.	28 (TM3)
5	Goryachev, V.	33 (IF3)	74	Jaberg, H.	32 (TM5)
9	Gourgoulianis, K.	24 (BIO)	83	Jaberg, H.	32 (TM5)
-	Göndöcs, J.	19 (WS6)	75	Jablonski, D.	17 (WS5)
26	Gyires-Tóth, B.	33 (IF3)	139	Janiga, G.	13 (WS3)
72	Gyürki, D.	24 (BIO)	101	Jankovic, N.	29 (TM4)
			24	Jiang, H.	20 (TM1)
	Н		2	Jiao, Z.	20 (TM1)
26	Hajgató, G.	33 (IF3)	84	Johnson, T.	7 (WS1)
52	Hamedi, N.	27 (PL)			
133	Haraszti, P.	13 (WS3)		К	
142	Hardalupas, Y.	23 (PLE-S4)	3	Kajiwara, T.	10 (IF1)
86	Harms, F.	30 (EV)	68	Kalmár-Nagy, T.	11 (ET)
88	Harms, F.	19 (WS6)	50	Kalva, M.	29 (TM4)
55	Hase, M.	16 (EF1)	4	Kanemoto, T.	20 (TM1)
97	Hasse, C.	34 (RF)	19	Katayama, R.	16 (EF1)
96	Hata, N.	20 (TM1)	40	Kawaguchi, Y.	30 (EV)
99	Hegedűs, F.	22 (BU)	84	Keshmiri, A.	7 (WS1)
103	Hemsuwan, W.	25 (TM2)	58	Keslerova, R.	24 (BIO)
43	Hemsuwan, W.	25 (TM2)	106	Kim, JH.	32 (TM5)
49	Hemsuwan, W.	25 (TM2)	106	Kim, SJ.	32 (TM5)
76	Hoerner, S.	32 (TM5)	3	Kimura, K.	10 (IF1)
59	Holler, S.	28 (TM3)	96	Kimura, Y.	20 (TM1)
			39	Klein, M.	30 (FV)

)

#	name	page (SessionID)	#	name	page (SessionID)
93	Koch, M.	22 (BU)	54	Martins, F.J.W.A.	33 (IF3)
1	Kocsis, B.	15 (WS4)	84	McElrov, M.	7 (WS1)
11	Kocsis, B.	15 (WS4)	30	Medina M., J. A.	34 (RF)
36	Koloszar, L.	33 (IF3)	-	Mészáros, R.	19 (WS6)
31	Konrad, J.	28 (TM3)	93	Mettin, R.	22 (BU)
110	Koren, M.	10 (IF1)	99	Mettin, R.	22 (BU)
-	Kovács, A.	19 (WS6)	38	Mihail, L.	27 (PL)
-	Kovács, Á.	19 (WS6)	137	Mikhal, J.	8 (WS1)
54	Kováts, P.	33 (IF3)	138	Mikhal, J.	14 (WS3)
72	Köszegi, Z.	24 (BIO)	48	Mochizuki, S.	29 (TM4)
111	Krämer, V.	16 (EF1)	141	Moreau, S.	6 (PLE-S1)
32	Kriegseis, J.	15 (WS4)	45	Mori, H.	22 (BU)
-	Kristóf, G.	19 (WS6)	34	Morrall, A.	28 (TM3)
131	Krolitzki, B.	7 (WS1)	31	Mosshammer, M.	28 (TM3)
97	Kronenburg, Y.	34 (RF)	131	Mueller, M.	7 (WS1)
64	Krutitskii, V.	20 (TM1)	4	Murakami, T.	20 (TM1)
79	Kuban, L.	34 (RF)			
37	Kuhlmann, H.	11 (ET)		Ν	
132	Kuze, M.	13 (WS3)	122	Na, J.	16 (EF1)
			4	Nagata, S.	20 (TM1)
	L		45	Nagumo, R.	22 (BU)
-	Lancz, D.	19 (WS6)	12	Nagy, P.T.	15 (WS4)
93	Lauterborn, W.	22 (BU)	13	Nagy, P.T.	26 (EF2)
93	Lechner, C.	22 (BU)	27	Nagy-György, P.	10 (IF1)
-	Leelőssy, A.	19 (WS6)	43	Nakada, S.	25 (TM2)
76	Leidhold, R.	32 (TM5)	49	Nakada, S.	25 (TM2)
86	Leitl, B.	30 (EV)	3	Nakayama, Y.	10 (IF1)
88	Leitl, B.	19 (WS6)	101	Nedeljkovic, M.	29 (TM4)
51	Leroyer, A.	25 (TM2)	98	Nedeljkovic, M.	28 (TM3)
92	Li, W.	29 (TM4)	41	Nishikawa, Y.	27 (PL)
24	Li, X.	20 (TM1)	96	Nomura, T.	20 (TM1)
39	Lignell, D. O.	30 (EV)		_	
128	Liu, S.	29 (TM4)		0	
129	Liu, S.	28 (1M3)	75	Odenwald, O.	17 (WS5)
126	Lior, A.	31 (MF)	95	Ogawa, S.	15 (WS4)
20	Louda, P.	29 (TM4)	96	Ogawa, S.	20 (TM1)
129	Lu, G.	28 (TM3)	132	Ohta, M.	13 (WS3)
97	LUO, K.	34 (RF)	95	Okada, H.	15 (WS4)
	м		19	Okanaga, H.	16 (EF1)
76	Maître. T	32 (TM5)	137	Ong, G.	7 (WS1)
91	Malv. A	10 (IF1)	138	Ong, G.	14 (WS3)
71		10 (11 1)	55	Osawa, Y.	16 (EF1)

#	name	page (SessionID)	#	name	page (SessionID)
	Р			S	
12	Paál, Gy.	15 (WS4)	85	Sabrowski, P.	31 (MF)
13	Paál, Gy.	26 (EF2)	103	Sakamoto, K.	25 (TM2)
133	Paál, Gy.	13 (WS3)	43	Sakamoto, K.	25 (TM2)
26	Paál, Gy.	33 (IF3)	49	Sakamoto, K.	25 (TM2)
72	Paál, Gy.	24 (BIO)	95	Samura, K.	15 (WS4)
73	Paál, Gy.	24 (BIO)	117	Santa, S.	10 (IF1)
64	Padash, T.	20 (TM1)	105	Sato, Y.	21 (IF2)
58	Padelek, T.	24 (BIO)	25	Schiffer, J.	22 (BU)
5	Panov, D.	33 (IF3)	74	Schiffer, J.	32 (TM5)
122	Park, Y.	16 (EF1)	29	Schmidt, H.	26 (EF2)
85	Pause, F.	31 (MF)	30	Schmidt, H.	34 (RF)
135	Perić, M.	18 (PLE-S3)	39	Schmidt, H.	30 (EV)
110	Petró, Z.	10 (IF1)	33	Schmidt, J.	17 (WS5)
117	Petró, Z.	10 (IF1)	75	Schmidt, J.	17 (WS5)
66	Praß, J.	26 (EF2)	77	Schmidt, J.	11 (ET)
20	Prihoda, J.	29 (TM4)	77	Schmidt, N.	11 (ET)
111	Pritz, B.	16 (EF1)	4	Setoguchi, T.	20 (TM1)
85	Przybilla, S.	31 (MF)	8	Shiau, BS.	30 (EV)
			132	Shimizu, Y.	13 (WS3)
			40	Shimohigashi, T.	30 (EV)
	Q		32	Simon, E.	15 (WS4)
34	Quayle, S.	28 (TM3)	5	Smirnov, E.	33 (IF3)
			96	Sorokin, Y.	20 (TM1)
			30	Starick, T.	34 (RF)
	R		38	Stefania, C.	27 (PL)
29	Rakhi	26 (EF2)	97	Stein, O.	34 (RF)
24	Ren, J.	20 (TM1)	91	Steinrück, H.	10 (IF1)
51	Revstedt, J.	25 (TM2)	79	Stempka, J.	34 (RF)
52	Revstedt, J.	27 (PL)	41	Sugihara, Y.	27 (PL)
70	Revstedt, J.	25 (TM2)	78	Sugihara, Y.	21 (IF2)
92	Revstedt, J.	29 (TM4)	108	Sugihara-Seki, M.	27 (PL)
58	Reznicek, H.	24 (BIO)	122	Sung, K. H.	16 (EF1)
5	Ris, V.	33 (IF3)	51	Szasz, R.	25 (TM2)
64	Rogalev, A.	20 (TM1)	110	Szente, V.	10 (IF1)
134	Roloff, C.	14 (WS3)	117	Szente, V.	10 (IF1)
37	Romanò, F.	11 (ET)	133	Szikora, I.	13 (WS3)
15	Rulik, S.	15 (WS4)	73	Szikora, I.	24 (BIO)
15	Rusin, K.	15 (WS4)	-	Szintai, B.	19 (WS6)
16	Rusin, K.	26 (EF2)	82	Szymanek, E.	11 (ET)
122	Ryou, H. S.	16 (EF1)			

))

4	L			
H	Ε.			

name

page (SessionID)

Т

name

102	Takahashi, T.	21 (IF2)
103	Takahashi, T.	25 (TM2)
105	Takahashi, T.	21 (IF2)
41	Takahashi, T.	27 (PL)
43	Takahashi, T.	25 (TM2)
45	Takahashi, T.	22 (BU)
49	Takahashi, T.	25 (TM2)
78	Takahashi, T.	21 (IF2)
4	Takao, M.	20 (TM1)
42	Takaya, T.	26 (EF2)
3	Takemitsu, H.	10 (IF1)
3	Takeuchi, T.	10 (IF1)
38	Tamasanu, F.	27 (PL)
111	Tempfli, E.	16 (EF1)
63	Thamsen, P.U.	31 (MF)
85	Thamsen, P.U.	31 (MF)
134	Thévenin, D.	14 (WS3)
54	Thévenin, D.	33 (IF3)
76	Thévenin, D.	32 (TM5)
-	Tieghi, L.	9 (WS2)
-	Tímár, Á.	19 (WS6)
11	Tokaji, K.	15 (WS4)
3	Tomiyama, H.	10 (IF1)
104	Toriu, D.	11 (ET)
130	Toriu, D.	27 (PL)
40	Tsukahara, T.	30 (EV)
132	Tupin, S.	13 (WS3)
79	Tyliszczak, A.	34 (RF)
82	Tyliszczak, A.	30 (ET)

U

130	Ushijima, S.	27 (PL)
104	Ushijima, S.	11 (ET)

V

36	van Beeck, J.	33 (IF3)
99	Varga, R.	22 (BU)
97	Vascellari, M.	34 (RF)
126	Vazquez-Gonzalez, T.	31 (MF)
-	Ventikos, Y.	7 (WS1)
36	Verstraete, T.	33 (IF3)
76	Vignal, L.	32 (TM5)
85	Villwock, J.	31 (MF)

W

102	Wakaki, S.	21 (IF2)
6	Wang, F.	26 (EF2)
8	Wang, SJ.	30 (EV)
66	Wannemacher, H.	26 (EF2)
76	Weber, CT.	32 (TM5)
84	White, S.	7 (WS1)
50	Willinger, R.	29 (TM4)
15	Wróblewski, W.	15 (WS4)
16	Wróblewski, W.	26 (EF2)

Υ

48	Yamada, G.	29 (TM4)
55	Yamada, G.	16 (EF1)
102	Yamada, Y.	21 (IF2)
45	Yamamoto, K.	22 (BU)
108	Yamashita, H.	27 (PL)
95	Yano, K.	15 (WS4)
130	Yanagi, H.	27 (PL)
132	Yu, K.	13 (WS3)

Ζ

54	Zähringer, K.	33 (IF3)
64	Zaryankin, A.	20 (TM1)
133	Závodszky, G.	13 (WS3)
73	Závodszky, G.	24 (BIO)
128	Zuo, Z.	29 (TM4)
129	Zuo, Z.	28 (TM3)

Lecture room locations at Danubius Hotel Gellért

Sponsors and Partners:

ERCOFTAC: European Research Community On Flow, Turbulence And Combustion www.ercoftac.org

TSI Inc. www.tsi.com

Budapest University of Technology and Economics, Faculty of Mechanical Engineering, Department of Fluid Mechanics www.ara.bme.hu

The Japan Society of Mechanical Engineers www.jsme.or.jp

The Visualization Society of Japan www.visualization.jp

UNDERSTANDING, ACCELERATED

www.cmff.hu